Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Isogeometric Analysis of the electrophysiology in the human heart: Numerical simulation of the bidomain equations on the atria
 
research article

Isogeometric Analysis of the electrophysiology in the human heart: Numerical simulation of the bidomain equations on the atria

Pegolotti, Luca  
•
Dede, Luca  
•
Quarteroni, Alfio  
January 1, 2019
Computer Methods In Applied Mechanics And Engineering

We consider Isogeometric Analysis (IGA) for the numerical solution of the electrophysiology of the atria, which in this work is modeled by means of the bidomain equations on thin surfaces. First, we consider the bidomain equations coupled with the Roger-McCulloch ionic model on simple slabs. Here, our goal is to evaluate the effects of the spatial discretization by IGA and the use of different B-spline basis functions on the accuracy of the approximation, in particular regarding the accuracy of the front velocity and the dispersion error. Specifically, we consider basis functions with high polynomial degree, p, and global high order continuity, Cp-1, in the computational domain: our results show that the use of such basis functions is beneficial to the accurate approximation of the solution. Then, we consider a realistic application of the bidomain equations coupled with the Courtemanche-Ramirez-Nattel ionic model on the two human atria, which are represented by means of two NURBS surfaces. (C) 2018 Elsevier B.V. All rights reserved.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés