Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Learning with Compressible Priors
 
conference paper not in proceedings

Learning with Compressible Priors

Cevher, Volkan  orcid-logo
2009
Neural Information Processing Systems (NIPS)

We describe a set of probability distributions, dubbed compressible priors, whose independent and identically distributed (iid) realizations result in p-compressible signals. A signal x in R^N is called p-compressible with magnitude R if its sorted coefficients exhibit a power-law decay as |x|_(i) <= R i^d, where the decay rate d is equal to 1/p. p-compressible signals live close to K-sparse signals (K< p) since their best K-sparse approximation error decreases with O(R K^{1/r-1/p}). We show that the membership of generalized Pareto, Student’s t, log-normal, Frechet, and log-logistic distributions to the set of compressible priors depends only on the distribution parameters and is independent of N. In contrast, we demonstrate that the membership of the generalized Gaussian distribution (GGD) depends both on the signal dimension and the GGD parameters: the expected decay rate of N-sample iid realizations from the GGD with the shape parameter q is given by 1/[q log (N/q)]. As stylized examples, we show via experiments that the wavelet coefficients of natural images are 1.67-compressible whereas their pixel gradients are 0.95 log (N/0.95)-compressible, on the average. We also leverage the connections between compressible priors and sparse signals to develop new iterative re-weighted sparse signal recovery algorithms that outperform the standard ell_1-norm minimization. Finally, we describe how to learn the hyperparameters of compressible priors in underdetermined regression problems.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Learning with Compressible Priors.pdf

Access type

openaccess

Size

326.65 KB

Format

Adobe PDF

Checksum (MD5)

272dd24e73ea892955f83d32cd522c94

Loading...
Thumbnail Image
Name

randcs.zip

Access type

openaccess

Size

1.9 KB

Format

ZIP

Checksum (MD5)

950364c1e412b095a5767be2abe527a1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés