Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Identification of Non-Linear RF Systems Using Backpropagation
 
Loading...
Thumbnail Image
conference paper

Identification of Non-Linear RF Systems Using Backpropagation

Kristensen, Andreas Toftegaard  
•
Burg, Andreas  
•
Balatsoukas-Stimming, Alexios  
January 1, 2020
2020 Ieee International Conference On Communications Workshops (Icc Workshops)
IEEE International Conference on Communications (IEEE ICC) / Workshop on NOMA for 5G and Beyond

In this work, we use deep unfolding to view cascaded non-linear RF systems as model-based neural networks. This view enables the direct use of a wide range of neural network tools and optimizers to efficiently identify such cascaded models. We demonstrate the effectiveness of this approach through the example of digital self-interference cancellation in full-duplex communications where an IQ imbalance model and a non-linear PA model are cascaded in series. For a self-interference cancellation performance of approximately 44.5 dB, the number of model parameters can be reduced by 74% and the number of operations per sample can be reduced by 79% compared to an expanded linear-in-parameters polynomial model.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés