Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Equivalent Circuit Analysis of CMUTs-based Device for Measurement in Liquid Samples
 
conference paper

Equivalent Circuit Analysis of CMUTs-based Device for Measurement in Liquid Samples

Zhao, Yihe  
•
Zhao, Libo
•
Barbruni, Gian Luca  
Show more
January 1, 2021
2021 Ieee International Symposium On Medical Measurements And Applications (Ieee Memea 2021)
16th IEEE International Symposium on Medical Measurements and Applications (IEEE MeMeA)

Capacitive micromachined ultrasonic transducers (CMUTs) operating at the series and parallel resonant frequencies, have shown a great potential in ultrasonic application and in biodetection. However, previous equivalent circuits rarely consider the fitting performance and measurement. This study proposes the establishment of the simplified equivalent circuits for the CMUTs-based device to analyze the electrical properties and the measurement sensitivity in liquid environment. We simulate a circular CMUT cell both in air and water through finite element method via COMSOL software, exploiting the multi-domain coupling method. We analyze the impedance behaviors of the CMUTs array with 100 cells under different direct current bias voltages (2 - 10V). Simultaneously, we successfully investigate the damping effects on the electrical characteristics such as impedance, phase, and quality factor. With the 4-element Butterworth-vanDyke model, two simplified equivalent lumped element models (LEMs) are demonstrated to fit the impedance curves of the CMUTs array around the series and parallel frequencies, respectively. Additionally, the sensitivity is evaluated using the simplified equivalent LEMs to explore the CMUTs array has a high normalized measurement sensitivity of 6.024 ppb/Hz at the parallel frequency.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés