Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Fokker-Planck linearization for non-Gaussian stochastic elastoplastic finite elements
 
research article

Fokker-Planck linearization for non-Gaussian stochastic elastoplastic finite elements

Karapiperis, Konstantinos  
•
Sett, Kallol
•
Levent Kavvas, M.
Show more
August 1, 2016
Computer Methods in Applied Mechanics and Engineering

Presented here is a finite element framework for the solution of stochastic elastoplastic boundary value problems with non-Gaussian parametric uncertainty. The framework relies upon a stochastic Galerkin formulation, where the stiffness random field is decomposed using a multidimensional polynomial chaos expansion. At the constitutive level, a Fokker-Planck-Kolmogorov (FPK) plasticity framework is utilized, under the assumption of small strain kinematics. A linearization procedure is developed that serves to update the polynomial chaos coefficients of the expanded random stiffness in the elastoplastic regime, leading to a nonlinear least-squares optimization problem. The proposed framework is illustrated in a static shear beam example of elastic-perfectly plastic as well as isotropic hardening material.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés