Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Methodologies for model-free data interpretation of civil engineering structures
 
Loading...
Thumbnail Image
research article

Methodologies for model-free data interpretation of civil engineering structures

Posenato, D.
•
Kripakaran, P.  
•
Inaudi, D.
Show more
2010
Computers and Structures

Structural health monitoring (SHM) has the potential to provide quantitative and reliable data on the real condition of structures, observe the evolution of their behaviour and detect degradation This paper presents two methodologies for model-free data interpretation to identify and localize anomalous behaviour in civil engineering structures Two statistical methods based on (i) moving principal component analysis and (ii) robust regression analysis are demonstrated to be useful for damage detection during continuous static monitoring of civil structures. The methodologies are tested on numerically simulated elements with sensors for a range of noise in measurements. A comparative study with other statistical analyses demonstrates superior performance of these methods for damage detection. Approaches for accommodating outliers and missing data, which are commonly encountered in structural health monitoring for civil structures, are also proposed. To ensure that the methodologies are scalable for complex structures with many sensors, a clustering algorithm groups sensors that have strong correlations between their measurements Methodologies are then validated on two full-scale structures: The results show the ability of the methodology to identify abrupt permanent changes in behavior. (C) 2010 Elsevier Ltd All rights reserved.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1016/j.compstruc.2010.01.001
Web of Science ID

WOS:000276156000007

Author(s)
Posenato, D.
•
Kripakaran, P.  
•
Inaudi, D.
•
Smith, I.F.C.  
Date Issued

2010

Publisher

Elsevier

Published in
Computers and Structures
Volume

88

Issue

7/8

Start page

467

End page

482

Subjects

Structural health monitoring

•

Data interpretation

•

Signal processing

•

Pattern recognition

•

Principal component analyses

•

Clustering

•

Damage Detection

•

Missing Data

•

Imputation Methods

•

Identification

•

Algorithm

•

Behavior

•

Values

Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
IMAC  
Available on Infoscience
December 20, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/62399
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés