Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Bootstrapping Heisenberg magnets and their cubic instability
 
research article

Bootstrapping Heisenberg magnets and their cubic instability

Chester, Shai M.
•
Landry, Walter
•
Liu, Junyu
Show more
November 18, 2021
Physical Review D

We study the critical O(3) model using the numerical conformal bootstrap. In particular, we use a recently developed cutting-surface algorithm to efficiently map out the allowed space of conformal field theory data from correlators involving the leading O(3) singlet s, vector phi, and rank-2 symmetric tensor t. We determine their scaling dimensions to be (Delta(phi), Delta(s), Delta(t)) = (0.518942(51), 1.59489(59), 1.20954(23)), and also bound various operator product expansion coefficients. We additionally introduce a new "tip-finding" algorithm to compute an upper bound on the leading rank-4 symmetric tensor t(4), which we find to be relevant with Delta(t4) < 2.99056. The conformal bootstrap thus provides a numerical proof that systems described by the critical O(3) model, such as classical Heisenberg ferromagnets at the Curie transition, are unstable to cubic anisotropy.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés