Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Student works
  4. Simulated annealing study of the disordered quantum magnet LiHoxEryY1-x-yF4
 
Loading...
Thumbnail Image
semester or other student projects

Simulated annealing study of the disordered quantum magnet LiHoxEryY1-x-yF4

Klughertz, Guillaume  
2012

Thermal and quantum phase transitions of some rare earth compounds (LiErF4, LiYbF4, LiGdF4 and LiTmF4) are established using the mean field theory. These preliminary calculations allowed evidencing the existence of a novel high-field antiferromagnetic phase in LiErF4, and a still unexplained symmetry breaking in LiGdF4. But the discrepancies with experimental results impel a more sophisticated method. We then present analytical and numerical evidence for the validity of an effective approach to the description of the dipolar coupled antiferromagnet LiErF4. We show that the approach, when implemented in mean field calculations, is able to capture both the qualitative and quantitative aspects of the physics of LiErF4 at small external field and low temperature, yielding results that agree with those obtained in the full Hilbert space using mean field theory. This model nevertheless still fails to describe the LiHoF4 system and needs to be improved. We finally use this toy model as a basis for classical Monte Carlo simulations of LiErF4, which allows the calculation of thermodynamical quantities of the system, as well as the evolution of the order parameters as a function of field H and temperature T. These calculations yield results that are much closer to the experiments than those based on the mean field approximation. Although the theoretical critical temperature is still overestimated by 34%, the critical exponents computed from this effective model correspond to those found experimentally.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Rapport_ENSPS_Klughertz.pdf

Access type

openaccess

Size

2.64 MB

Format

Adobe PDF

Checksum (MD5)

287d839e93c3edf26136357a2a5b0488

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés