Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Embedded 3D vision system for automated micro-assembly
 
conference paper

Embedded 3D vision system for automated micro-assembly

Mure-Dubois, James Christian Charles  
•
Hügli, Heinz  
2006
Proceedings of the SPIE
SPIE

Machine vision plays an important role in automated assembly. However, present vision systems are not adequate for robot control in an assembly environment where individual components have sizes in the range of 1 to 100 micrometers, since current systems do not provide sufficient resolution in the whole workspace when they are fixed, and they are too bulky to be brought close enough to the components. A small-size 3D vision system is expected to provide two decisive advantages: high accuracy and high flexibility. The presented work aims to develop a 3D vision sensor easily embedded in a micro-assembly robot. The paper starts by a screening of 3D sensing methods, performed in order to identify the best candidates for miniaturization, and that results in the selection of the multifocus principle (which elegantly avoids the depth of field problem encountered for example in stereo vision). Here, depth is measured by determination of sharpness maxima in a stack of images acquired at different elevations. Then, it presents a preliminary system configuration, that delivers images of a 1300×1000 micrometers field of view with lateral resolution better than 5 micrometers and vertical resolution better than 20 micrometers. Finally, future steps in development of a real-time embedded multifocus sensor are presented, with a discussion of the most critical tradeoffs.

  • Files
  • Details
  • Metrics
Type
conference paper
DOI
10.1117/12.686675
Author(s)
Mure-Dubois, James Christian Charles  
Hügli, Heinz  
Date Issued

2006

Published in
Proceedings of the SPIE
Volume

6382-20

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
ESPLAB  
PARLAB  
Event nameEvent date
SPIE

October 11, 2006

Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/69825
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés