Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. MPL: Lifting 3D Human Pose from Multi-view 2D Poses
 
conference paper

MPL: Lifting 3D Human Pose from Multi-view 2D Poses

Ghasemzadeh, Seyed Abolfazl
•
Alahi, Alexandre  
•
De Vleeschouwer, Christophe
Del Bue, Alessio
•
Canton, Cristian
Show more
October 25, 2024
Computer Vision – ECCV 2024. Milan, Italy, September 29–October 4, 2024, Proceedings
T-CAP ECCV24

Estimating 3D human poses from 2D images is challenging due to occlusions and projective acquisition. Learning-based approaches have been largely studied to address this challenge, both in single and multi-view setups. These solutions however fail to generalize to real-world cases due to the lack of (multi-view) ‘in-the-wild’ images paired with 3D poses for training. For this reason, we propose combining 2D pose estimation, for which large and rich training datasets exist, and 2D-to-3D pose lifting, using a transformer-based network that can be trained from synthetic 2D-3D pose pairs. Our experiments demonstrate decreases up to 45% in MPJPE errors compared to the 3D pose obtained by triangulating the 2D poses. The framework’s source code is available at https://github.com/aghasemzadeh/OpenMPL.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés