Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Nanoparticle-enhanced Imaging Based Plasmonic Biosensor
 
doctoral thesis

Nanoparticle-enhanced Imaging Based Plasmonic Biosensor

Belushkin, Alexander  
2020

Efficient medical care fundamentally relies on the ability to provide a timely and accurate diagnosis. Thanks to advances in biomedical research, specific molecules called diagnostic molecular biomarkers have been discovered in the human body that help indicate diseases in highly specific ways. The small size and low concentration of many of these molecules pose a serious challenge to detecting them from the rich content of human blood and other liquid biopsies. Medical laboratories use large and complex tools to enable sensitive and robust quantification of such biomarkers. However, these approaches are time-consuming, require expensive equipment and delay the doctors' decision-making. Therefore, compact, cost-effective and rapid technologies that enable testing of biological fluids to identify low-abundance biomarkers directly at the patientâ s bedside are critically needed to assist the modern healthcare. This doctoral thesis presents a novel biosensor that enables highly sensitive, accurate and rapid detection of disease biomarkers in a low-cost and portable device directly from patient blood serum. The first major and original contribution is on the introduction of an innovative sensing principle that uses sub-wavelength gold nanoparticles and large area periodic gold nanohole arrays. The nanohole arrays consist of millions of nano-perforations in a thin gold metal film on a glass substrate and enable a plasmonic phenomenon called extraordinary optical transmission. The interactions between nanoparticles and nanoholes are imaged in a spectrometer-free set-up and enable the detection of individual molecule binding in complex samples. Unlike conventional plasmonic sensing approaches that rely on spectral shifts of plasmonic resonances, our method exploits intensity modulations caused by individual nanoparticles on nanohole arrays. Therefore, the technology overcomes classical plasmonic detection limits imposed by refractive index sensitivity. The work shows that the biosensor achieves highly sensitive detection, meeting clinically relevant concentrations, and can provide a powerful platform for biomarkers testing. The second major and original contribution includes the integration of the novel plasmonic sensor technology into a portable point-of-care (POC) device. It is deployed in a hospital and validated with a wide range of patient samples with inflammatory conditions. The device enables ultra-sensitive detection of two sepsis-related biomarkers, procalcitonin, and C-reactive protein. The tests with biobank patient samples revealed that the novel POC device provides diagnostic performance equivalent to gold standard laboratory immunoassays. Moreover, identification of biomarker levels can be performed in under 15 minutes on-site, providing critical advantage compared to laboratory testing. The results of this thesis build upon a broad interdisciplinary knowledge ranging from engineering (including plasmonics, imaging, nanofabrication, and device integration) to chemistry, biology, and medical diagnostics. The plasmonic sensing principle introduced in this work offers a promising strategy for the development of many new biosensing applications, while the developed point-of-care biosensor has the potential to provide a rapid and accurate tool to assist the diagnosis and management of diseases in various settings, improving the quality of medical care for more people.

  • Files
  • Details
  • Metrics
Type
doctoral thesis
DOI
10.5075/epfl-thesis-7548
Author(s)
Belushkin, Alexander  
Advisors
Altug, Hatice  
Jury

Dr Sandro Carrara (président) ; Prof. Hatice Altug (directeur de thèse) ; Prof. Demetri Psaltis, Dr Rolando Ferrini, Prof. Jong-Souk Yeo (rapporteurs)

Date Issued

2020

Publisher

EPFL

Publisher place

Lausanne

Public defense year

2020-10-23

Thesis number

7548

Total of pages

170

Subjects

biosensors

•

nanoplasmonics

•

gold nanoparticles

•

plasmonic nanohole arrays

•

plasmonic imaging

•

digital molecule detection

•

point-of-care diagnostics

•

sepsis

EPFL units
BIOS  
Faculty
STI  
School
IBI-STI  
Doctoral School
EDMI  
Available on Infoscience
October 9, 2020
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/172379
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés