Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Preprints and Working Papers
  4. Measurement-Induced Collective Vibrational Quantum Coherence under Spontaneous Raman Scattering in a Liquid
 
working paper

Measurement-Induced Collective Vibrational Quantum Coherence under Spontaneous Raman Scattering in a Liquid

Vento, Valeria  
•
Tarrago Velez, Santiago  
•
Pogrebna, Anna  
Show more
October 4, 2022

Spontaneous vibrational Raman scattering is a ubiquitous form of light-matter interaction whose description necessitates quantization of the electromagnetic field. It is usually considered as an incoherent process because the scattered field lacks any predictable phase relationship with the incoming field. When probing an ensemble of molecules, the question therefore arises: What quantum state should be used to describe the molecular ensemble following spontaneous Stokes scattering? We experimentally address this question by measuring time-resolved Stokes--anti-Stokes two-photon coincidences on a molecular liquid consisting of several sub-ensembles with slightly different vibrational frequencies. When spontaneously scattered Stokes photons and subsequent anti-Stokes photons are detected into a single spatiotemporal mode, the observed dynamics is inconsistent with a statistical mixture of individually excited molecules. Instead, we show that the data are reproduced if Stokes--anti-Stokes correlations are mediated by a collective vibrational quantum, i.e. a coherent superposition of all molecules interacting with light. Our results demonstrate that the degree of coherence in the vibrational state of the liquid is not an intrinsic property of the material system, but rather depends on the optical excitation and detection geometry.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2105.00213.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

License Condition

copyright

Size

3.1 MB

Format

Adobe PDF

Checksum (MD5)

b35b669dea992f2a2dc134083dd44ab5

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés