Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Neuroprotective effect of a CNTF-expressing lentiviral vector in the quinolinic acid rat model of Huntington's disease
 
research article

Neuroprotective effect of a CNTF-expressing lentiviral vector in the quinolinic acid rat model of Huntington's disease

de Almeida, L. P.
•
Zala, D.  
•
Aebischer, P.  
Show more
2001
Neurobiol Dis

Neurodegenerative diseases represent promising targets for gene therapy approaches provided effective transfer vectors. In the present study, we evaluated the effectiveness of LacZ-expressing lentiviral vectors with two different internal promoters, the mouse phosphoglycerate kinase 1 (PGK) and cytomegalovirus (CMV), to infect striatal cells. The intrastriatal injection of lenti-beta-Gal vectors lead to 207, 400 +/- 11,500 and 303,100 +/- 4,300 infected cells in adult rats, respectively. Importantly, the beta-galactosidase activity was higher in striatal extracts from PGK-LacZ-injected animals as compared to CMV-LacZ animals. The efficacy of the system was further examined with a potential therapeutic gene for the treatment of Huntington's disease, the human ciliary neurotrophic factor (CNTF). PGK-LacZ- or PGK-CNTF-expressing viruses were stereotaxically injected into the striatum of rats, 3 weeks later the animals were unilaterally lesioned with 180 nmol of quinolinic acid (QA). Control animals displayed 148 +/- 43 apomorphine-induced rotations ipsilateral to the lesion 5 days postlesion as compared to 26 +/- 22 turns/45 min in the CNTF-treated group. The extent of the striatal damage was significantly diminished in the CNTF-treated rats as indicated by the 52 +/- 9.7% decrease of the lesion volume and the sparing of DARPP-32, ChAT and NADPH-d neuronal populations. These results further establish that lentiviruses may represent an efficient gene delivery system for the screening of therapeutic molecules in Huntington's disease.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés