Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Shortest-Weight Paths In Random Regular Graphs
 
research article

Shortest-Weight Paths In Random Regular Graphs

Amini, Hamed
•
Peres, Yuval
2014
Siam Journal On Discrete Mathematics

Consider a random regular graph with degree d and of size n. Assign to each edge an independent and identically distributed exponential random variable with mean one. In this paper we establish a precise asymptotic expression for the maximum number of edges on the shortest-weight paths between a fixed vertex and all the other vertices, as well as between any pair of vertices. Namely, for any fixed d >= 3, we show that the longest of these shortest-weight paths has about (alpha) over cap log n edges, where (alpha) over cap is the unique solution of the equation alpha log (d-2/d-1 alpha) -alpha = d-3/d-2 for alpha > d-1/d-2.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés