Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Evolving morphotropic phase boundary in lead-free (Bi[sub 1/2]Na[sub 1/2])TiO[sub 3]–BaTiO[sub 3] piezoceramics
 
research article

Evolving morphotropic phase boundary in lead-free (Bi[sub 1/2]Na[sub 1/2])TiO[sub 3]–BaTiO[sub 3] piezoceramics

Jo, Wook
•
Daniels, John E.
•
Jones, Jacob L.
Show more
2011
Journal of Applied Physics

The correlation between structure and electrical properties of lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO(3) (BNT-100xBT) polycrystalline piezoceramics was investigated systematically by in situ synchrotron diffraction technique, combined with electrical property characterization. It was found that the morphotropic phase boundary (MPB) between a rhombohedral and a tetragonal phase evolved into a morphotropic phase region with electric field. In the unpoled material, the MPB was positioned at the transition from space group R3m to P4mm (BNT-11BT) with optimized permittivity throughout a broad single-phase R3m composition regime. Upon poling, a range of compositions from BNT-6BT to BNT-11BT became two-phase mixture, and maximum piezoelectric coefficient was observed in BNT-7BT. It was shown that optimized electrical properties are related primarily to the capacity for domain texturing and not to phase coexistence. (C) 2011 American Institute of Physics. [doi:10.1063/1.3530737]

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1063/1.3530737
Web of Science ID

WOS:000286219300099

Author(s)
Jo, Wook
Daniels, John E.
Jones, Jacob L.
Tan, Xiaoli
Thomas, Pamela A.
Damjanovic, Dragan  
RöDel, JüRgen
Date Issued

2011

Publisher

American Institute of Physics

Published in
Journal of Applied Physics
Volume

109

Issue

1

Article Number

014110

Subjects

Free Piezoelectric Ceramics

•

Electromechanical Response

•

Ferroelectric Ceramics

•

Polarization Rotation

•

Electrical-Properties

•

Solid-Solution

•

Behavior

•

Origin

•

System

•

Strain

Editorial or Peer reviewed

NON-REVIEWED

Written at

EPFL

EPFL units
LC  
Available on Infoscience
August 11, 2011
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/69988
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés