Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Crack propagation speeds in weak snowpack layers
 
research article

Crack propagation speeds in weak snowpack layers

Bergfeld, Bastian
•
van Herwijnen, Alec
•
Bobillier, Gregoire
Show more
December 13, 2021
Journal Of Glaciology

For the release of a slab avalanche, crack propagation within a weak snowpack layer below a cohesive snow slab is required. As crack speed measurements can give insight into underlying processes, we analysed three crack propagation events that occurred in similar snowpacks and covered all scales relevant for avalanche release. For the largest scale, up to 400 m, we estimated crack speed from an avalanche movie; for scales between 5 and 25 m, we used accelerometers placed on the snow surface and for scales below 5 m, we performed a propagation saw test. The mean crack speeds ranged from 36 +/- 6 to 49 +/- 5 m s(-1), and did not exhibit scale dependence. Using the discrete element method and the material point method, we reproduced the measured crack speeds reasonably well, in particular the terminal crack speed observed at smaller scales. Finally, we used a finite element model to assess the speed of different elastic waves in a layered snowpack. Results suggest that the observed cracks propagated as mixed mode closing cracks and that the flexural wave of the slab is responsible for the energy transfer to the crack tip.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés