Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Studies of charm quark diffusion inside jets using PbPb and pp collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV
 
report

Studies of charm quark diffusion inside jets using PbPb and pp collisions at $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV

Sirunyan, Albert M
•
Tumasyan, Armen
•
Adam, Wolfgang
Show more
November 4, 2019

The first study of charm quark diffusion with respect to the jet axis in heavy ion collisions is presented. The measurement is performed using jets with $p_\mathrm{T}^\mathrm{jet}>$ 60 GeV and D$^0$ mesons with $p_\mathrm{T}^\mathrm{D}>$ 4 GeV in lead-lead (PbPb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_\mathrm{NN}} =$ 5.02 TeV, recorded by the CMS detector at the LHC. The radial distribution of D$^0$ mesons with respect to the jet axis is sensitive to the production mechanisms of the meson, as well as to the energy loss and diffusion processes undergone by its parent parton inside the strongly interacting medium produced in PbPb collisions. When compared to Monte Carlo event generators, the radial distribution in pp collisions is found to be well-described by PYTHIA, while the slope of the distribution predicted by SHERPA is steeper than that of the data. In PbPb collisions, compared to the pp results, the D$^0$ meson distribution for $4 < p_\mathrm{T}^\mathrm{D}<$ 20 GeV hints at a larger distance on average with respect to the jet axis, reflecting a diffusion of charm quarks in the medium created in heavy ion collisions. At higher $p_\mathrm{T}^\mathrm{D}$, the PbPb and pp radial distributions are found to be similar.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1911.01461.pdf

Access type

openaccess

Size

623.86 KB

Format

Adobe PDF

Checksum (MD5)

4d1bcef6a9ee0df2c1da1f6a1837c896

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés