Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. High-Performance III-V MOSFETs and Tunnel-FETs Integrated on Silicon
 
doctoral thesis

High-Performance III-V MOSFETs and Tunnel-FETs Integrated on Silicon

Convertino, Clarissa  
2020

Silicon transistor scaling is approaching its end and a transition to novel materials and device concepts is more than ever essential. High-mobility compound semiconductors are considered promising candidates to replace silicon, targeting low-power logic and high-speed electronics. However, to enable large scale and cost-effective integration, it is crucial to address the challenge of integrating III-V devices on silicon substrates and to ensure CMOS processing compatibility. In this work, possibilities and limitations of III-V-on-silicon electronics are explored experimentally. A material platform, suitable for 3D and co-planar integration of InGaAs-based devices with multiple functionalities and featuring CMOS compatible process modules is here presented. Scaled InGaAs FinFETs showing record high on-current of 350 µA/µm (IOFF = 100 nA/µm and VDD = 0.5 V), for III-V FETs on Si are demonstrated. Comparable device performance is also achieved in a 3D sequential integration fashion, where InGaAs transistor are fabricated on top of a Si CMOS device layer. The designed fabrication flow, targeting high-performance devices, can be adapted to the heterogeneous integration of multiple III-V compounds. Hence, following the same approach, the first sub-thermionic heterojunction InGaAs/GaAsSb Tunnel-FETs on silicon are reported. Tunnel-FETs belong to the category of steep-slope devices and can overcome MOSFET fundamental limitations taking advantage of quantum transport laws. In this work, some of the key technological challenges to fabricate III-V Tunnel-FETs are addressed and their impact on performance is experimentally demonstrated.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH8346.pdf

Access type

openaccess

Size

55.62 MB

Format

Adobe PDF

Checksum (MD5)

50fc31eaf13e5a3a5df4a127676355c8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés