Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Thermally actuated optical microscanner with large angle and low consumption
 
research article

Thermally actuated optical microscanner with large angle and low consumption

Schweizer, Sandra  
•
Calmes, S.
•
Laudon, M.
Show more
1999
SENSORS AND ACTUATORS A-PHYSICAL

A monolithic silicon integrated optical micro-scanner is presented. The device consists of a mirror located on the tip of a thermal bimorph actuator beam. The fabrication process is very simple and compatible with IC fabrication techniques. The device is excited electrothermally at its resonance frequency, enabling large angular deflections at low power consumption. The technological process consists of basic frontside silicon micromachining steps requiring only three mask levels. The moving part is defined by selective silicon bulk etching. The bimorph beam is made of silicon dioxide and a thin film conductor. The residual stress in the two layers is used to achieve a 45 degrees out-of-plane rest position of the mirror. This allows optical components (e.g., laser diode, collimating lens) to be placed directly on the silicon substrate. Mirrors of 500 x 300 to 800 x 800 mu m(2) with resonant frequencies varying from 600 to 100 Hz were realized. Mechanical scan angles of above 90 degrees were achieved. The devices are very robust and have run through fatigue tests of billions of cycles at 300 Hz and 90 degrees deflection. The power consumption of the device is typically 1 mW for 30 degrees mirror deflection. (C) 1999 Elsevier Science S.A. All rights reserved.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1016/S0924-4247(99)00012-6
Web of Science ID

WOS:000083925200075

Author(s)
Schweizer, Sandra  
•
Calmes, S.
•
Laudon, M.
•
Renaud, Philippe  
Date Issued

1999

Published in
SENSORS AND ACTUATORS A-PHYSICAL
Volume

76

Issue

1-3

Start page

470

End page

477

Subjects

mirrors

•

silicon

•

array

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LMIS4  
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/216139
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés