Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Vibronic Coupling Hamiltonian to Describe the Ultrafast Excited State Dynamics of a Cu(I)-Phenanthroline Complex
 
research article

A Vibronic Coupling Hamiltonian to Describe the Ultrafast Excited State Dynamics of a Cu(I)-Phenanthroline Complex

Capano, Gloria  
•
Penfold, Thomas J.  
•
Roethlisberger, Ursula  
Show more
2014
Chimia

We present a model Hamiltonian to study the nonadiabatic dynamics of photoexcited Cu(dmp)(2), (dmp = 2,9-dimethyl-1,10-phenanthroline). The relevant normal modes, identified by the magnitude of the first order coupling constants, correspond closely to those observed experimentally. The potential energy surfaces (PES) and nonadiabatic couplings for these modes are computed and provide a first interpretation of the nonadiabatic relaxation mechanism. The Hamiltonian incorporates both the low lying singlet and triplet states, which will make it possible to follow the dynamics from the photoexcitation event to the initial stages of intersystem crossing.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés