Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Phase transition of layer-stacked borophene under pressure
 
research article

Phase transition of layer-stacked borophene under pressure

Weng, Xiao-Ji
•
Wu, QuanSheng  
•
Shao, Xi
Show more
June 8, 2022
Physical Review B

The 8-Pmmn borophene, a boron analog of graphene, hosts tilted and anisotropic massless Dirac fermion quasiparticles owing to the presence of a distorted graphenelike sublattice. First-principles calculations show that stacked 8-Pmmn borophene is transformed into fused three-dimensional borophene under pressure, being accompanied by partial bond breaking and bond reformation. Strikingly, fused 8-Pmmn borophene inherits the Dirac band dispersion resulting in an unusual semimetal-semimetal transition. A simple tight-binding model derived from graphene qualitatively reveals the underlying physics due to the maximum preservation of the graphenelike substructure after the phase transition, which contrasts greatly to the transformation of graphite into diamond associated with the semimetal-insulator transition.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés