Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Pedestrian intention prediction: A convolutional bottom-up multi-task approach
 
research article

Pedestrian intention prediction: A convolutional bottom-up multi-task approach

Razali, Haziq
•
Mordan, Taylor  
•
Alahi, Alexandre  
July 15, 2021
Transportation Research Part C: Emerging Technologies

The ability to predict pedestrian behaviour is crucial for road safety, traffic management systems, Advanced Driver Assistance Systems (ADAS), and more broadly autonomous vehicles. We present a vision-based system that simultaneously locates where pedestrians are in the scene, estimates their body pose and predicts their intention to cross the road. Given a single image, our proposed neural network is designed using a bottom-up approach and thus runs at nearly constant time without relying on a pedestrian detector. Our method jointly detects human body poses and predicts their intention in a multitask framework. Experimental results show that the proposed model outperforms the precision scores of the state-of-the-art for the task of intention prediction by approximately 20% while running in real-time (5 fps). The source code is publicly available so that it can be easily integrated into an ADAS or into any traffic light management systems.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés