Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Oligomerization properties of GCN4 leucine zipper e and g position mutants
 
research article

Oligomerization properties of GCN4 leucine zipper e and g position mutants

Zeng, X.
•
Zhu, H.
•
Lashuel, H. A.  
Show more
1997
Protein science : a publication of the Protein Society

Putative intersubunit electrostatic interactions between charged amino acids on the surfaces of the dimer interfaces of leucine zippers (g-e' ion pairs) have been implicated as determinants of dimerization specificity. To evaluate the importance of these ionic interactions in determining the specificity of dimer formation, we constructed a pool of > 65,000 GCN4 leucine zipper mutants in which all the e and g positions are occupied by different combinations of alanine, glutamic acid, lysine, or threonine. The oligomerization properties of these mutants were evaluated based on the phenotypes of cells expressing lambda repressor-leucine zipper fusion proteins. About 90% of the mutants do not form stable homooligomers. Surprisingly, approximately 8% of the mutant sequences have phenotypes consistent with the formation of higher-order (> dimer) oligomers, which can be classified into three types based on sequence features. The oligomerization states of mutants from two of these types were determined by characterizing purified fusion proteins. The Type I mutant behaved as a tetramer under all tested conditions, whereas the Type III mutant formed a variety of higher-order oligomers, depending on the solution conditions. Stable homodimers comprise less than 3% of the pool; several g-e' positions in these mutants could form attractive ion pairs. Putative repulsive ion pairs are not found among the homodimeric mutants. However, patterns of charged residues at the e and g positions do not seem to be sufficient to predict either homodimer or heterodimer formation among the mutants.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1002/pro.5560061016
PubMed ID

9336844

Author(s)
Zeng, X.
Zhu, H.
Lashuel, H. A.  
Hu, J. C.
Date Issued

1997

Publisher

Cold Spring Harbor Laboratory Press

Published in
Protein science : a publication of the Protein Society
Volume

6

Issue

10

Start page

2218

End page

26

Subjects

DNA-Binding Proteins

•

Leucine Zippers

•

Mutagenesis, Site-Directed

•

Saccharomyces cerevisiae Proteins

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LMNN  
Available on Infoscience
October 28, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/44002
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés