Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems
 
research article

Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems

Burman, Erik  
•
Hansbo, Peter
2004
Computer Methods in Applied Mechanics and Engineering

In this paper we recall a stabilization technique for finite element methods for convection-diffusion-reaction equations, originally proposed by Douglas and Dupont. The method uses least square stabilization of the gradient jumps a across element boundaries. We prove that the method is stable in the hyperbolic limit and prove optimal a priori error estimates. We address the question of monotonicity of discrete solutions and present some numerical examples illustrating the theoretical results

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés