Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Lead-Oxygen Bond Length Distributions of the Relaxor Ferroelectric 0.67PbMg(1/3)Nb(2/3)O(3)-0.33PbTiO(3) from Pb-207 Nuclear Magnetic Resonance
 
Loading...
Thumbnail Image
research article

Lead-Oxygen Bond Length Distributions of the Relaxor Ferroelectric 0.67PbMg(1/3)Nb(2/3)O(3)-0.33PbTiO(3) from Pb-207 Nuclear Magnetic Resonance

Avalos, Claudia E.  
•
Walder, Brennan J.  
•
Emsley, Lyndon  
June 27, 2019
Journal Of Physical Chemistry C

We investigate changes in the local environment of Pb-207 sites in the relaxor ferroelectric 0.67PbMg(1/3)Nb(2/3)O(3)-0.33PbTiO(3) using variable temperature magic angle spinning nuclear magnetic resonance. We observe a Gaussian distribution of Pb-207 chemical shifts with a mean chemical shift of -1469 +/- 8 ppm and a standard deviation of 229 +/- 8 ppm at 306 K and a mean chemical shift of -1410 +/- 1 ppm and a standard deviation of 275 +/- 1 ppm at 117 K. This corresponds to a decrease in the mean Pb-O bond length and a concurrent decrease in the effective coordination number from 6 to 5.8. An observed change in the asymmetry parameter from 0.4 to 0.8 for deshielded sites as well as a change in the shielding anisotropy of 300 ppm compared to 180 ppm for the more shielded resonances, indicating that the lead sites experience a more asymmetric environment at low temperature. Our observations support the unique direction model for Pb2+ ion displacements, in line with similar relaxor ferroelectric systems near room temperature. Multifield T-1 relaxation behavior observed between 9.4 and 21.1 T is indicative of a slowing down of dynamics around 200 K, and appears to be determined by spin-rotation fluctuations at high temperatures and a magnetic-field-dependent relaxation pathway at low temperatures.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés