Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Wavelet de-noising for highly noisy source separation
 
conference paper

Wavelet de-noising for highly noisy source separation

Paraschiv-Ionescu, A.  
•
Jutten, C.
•
Aminian, K.  
Show more
2002
Proceedings - IEEE International Symposium on Circuits and Systems
2002 IEEE International Symposium on Circuits and Systems

The aim of this paper is to demonstrate that wavelet denoising processing is extremely attractive for efficient source separation of strong noisy mixtures. Systematic numerical simulations using source separation algorithms after wavelet de-noising are used to provide quantitative evaluations of the efficiency of the method. The cases of correlated Gaussian and non-Gaussian noise are investigated, which open the way to various practical applications.

  • Details
  • Metrics
Type
conference paper
DOI
10.1109/ISCAS.2002.1009812
Web of Science ID

WOS:000186280600051

Scopus ID

2-s2.0-0036280709

Author(s)
Paraschiv-Ionescu, A.  
Jutten, C.
Aminian, K.  
Najafi, B.  
Robert, Ph.  
Date Issued

2002

Published in
Proceedings - IEEE International Symposium on Circuits and Systems
Volume

1

Start page

201

End page

204

Subjects

Algorithms

•

Blind source separation

•

Computational complexity

•

Computer simulation

•

Independent component analysis

•

Signal to noise ratio

•

Wavelet transforms

•

Discrete wavelet transform

•

Noisy source separation

•

Wavelet denoising

•

Digital signal processing

Note

Swiss Federal Inst. of Technology, Lausanne, Switzerland Cited By: 3; Export Date: 14 August 2006; Source: Scopus CODEN: PICSD Language of Original Document: English Correspondence Address: Paraschiv-Ionescu, A.; Swiss Federal Inst. of Technology Lausanne, Switzerland References: Akuzawa, T., New fast factorization method for multivariate optimization and its realization as ICA algorithm http://www.mns.brain.riken.go.jp/'akuzawa; Attias, H., Independent factor analysis (1999) Neural Computation, 11, pp. 803-851; Buckheit, J., Donoho, D.L., Wavelab and reproductible research (1994) Wavelets in Statistics, pp. 55-82, In A. Antoniadis and G. Oppenheim, editors; Cichocki, A., Douglas, S.C., Amari, S., Robust techniques for independent component analysis with noisy data (1998) Neurocomputing, 22, pp. 113-129; Donoho, D.L., Johnstone, I.M., Adapting to unknown smoothness via wavelet shrinkage (1995) J. Am. Statist. Ass., 90, pp. 1200-1244; Donoho, D.L., Yu, T.P.Y., Nonlinear wavelet transforms based on median interpolation http://www- stat.stanford.edu/~donoho/Reports; Hyvarinen, A., Karhunen, J., Oja, E., (2001) Independent Component Analysis, John Wiley & Sons; Mallat, S.G., A theory of multiresolution signal decomposition: The wavelet representation (1989) IEEE Trans. Pattn. Anal. Mach. Intell., 11, pp. 674-693. Sponsors: IEEE

Written at

EPFL

EPFL units
LMAM  
Event nameEvent place
2002 IEEE International Symposium on Circuits and Systems

Phoenix, AZ

Available on Infoscience
November 30, 2006
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/237146
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés