Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Design and modeling of self-aligned nano-imprinted sub-micrometer pentacene-based organic thin-film transistors
 
research article

Design and modeling of self-aligned nano-imprinted sub-micrometer pentacene-based organic thin-film transistors

Zanella, F.
•
Marjanovic, N.
•
Ferrini, R.
Show more
2013
Organic Electronics

Sub-micrometer channel length (0.5 mu m) organic thin-film transistors (OTFTs) are demonstrated using a process flow combining nano-imprint lithography (NIL) and self-alignment (SA). A dedicated test structure was designed and samples were fabricated on 4-in. plastic foils using a p-type sublimated small molecule (pentacene) as semiconductor. Field-effect mobilities, in saturation, between 0.1 and 1 cm(2)/Vs were obtained not only for the supermicron OTFTs but also for the submicron OTFTs. Those devices were used to select a model based on the "TFT Generic Charge Drift model" which works well for a broad range of channel lengths including the submicron OTFTs. We show that these OTFTs can be accurately modeled, thus giving access to complex circuit simulations and design. (C) 2013 Elsevier B. V. All rights reserved.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés