Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Liquid State and Zombie Dye Sensitized Solar Cells with Copper Bipyridine Complexes Functionalized with Alkoxy Groups
 
research article

Liquid State and Zombie Dye Sensitized Solar Cells with Copper Bipyridine Complexes Functionalized with Alkoxy Groups

Saygili, Yasemin  
•
Stojanovic, Marko  
•
Kim, Hui-Seon  
Show more
March 9, 2020
The Journal of Physical Chemistry C

Copper redox mediators can be employed in dye sensitized solar cells (DSCs) both as liquid electrolytes or as solid state hole transport materials (HTMs). The solid state devices that employ copper complex HTMs can be simply obtained by solvent evaporation in liquid state devices. During this evolution, the copper complex molecules present in the electrolyte solvent slowly aggregate in the pores of the TiO2 film and also close the gap between the TiO2 film and counter electrode. However, the crystallization of the HTM that infiltrated in the mesoscopic TiO2 pores can lead to low photovoltaic performance. In order to prevent this problem, we designed two copper redox mediators [Cu(beto)2]1+ (beto = 4,4′-diethoxy-6,6′-dimethyl-2,2′-bipyridine) and [Cu(beto2Ox)2]1+ (beto2Ox = 4,4′-bis(2- methoxyethoxy)-6,6′-dimethyl-2,2′-bipyridine) with extended side chains. First, we studied these complexes in liquid state devices in reference to the [Cu(tmby)2]2+/1+ complex (tmby = 4,4′,6,6′- tetramethyl-2,2′ bipyridine). The solar-to- electrical power conversion efficiencies for liquid state devices were over 10% for all of the complexes by using the organic Y123 dye under 1000 Wm−2 AM1.5G illumination. However, solid state devices showed significantly diminished charge transport properties and short circuit current density values even though the crystallization was reduced.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1021/acs.jpcc.0c00671
Author(s)
Saygili, Yasemin  
Stojanovic, Marko  
Kim, Hui-Seon  
Teuscher, Joel  
Scopelliti, Rosario  
Freitag, Marina
Zakeeruddin, Shaik M.  
Moser, Jacques-E.  
Grätzel, Michael  
Hagfeldt, Anders  
Date Issued

2020-03-09

Published in
The Journal of Physical Chemistry C
Volume

C124

Issue

13

Start page

7071

End page

7081

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
GR-MO  
LSPM  
LPI  
Available on Infoscience
April 6, 2020
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/168003
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés