Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. On the Influence of Informed Agents on Learning and Adaptation Over Networks
 
research article

On the Influence of Informed Agents on Learning and Adaptation Over Networks

Tu, Sheng-Yuan
•
Sayed, Ali H.  
2013
IEEE Transactions on Signal Processing

Adaptive networks consist of a collection of agents with adaptation and learning abilities. The agents interact with each other on a local level and diffuse information across the network through their collaboration. In this work, we consider two types of agents: informed agents and uninformed agents. The former receive new data regularly and perform consultation and in-network processing, while the latter do not collect data and only participate in the consultation tasks. We examine the performance of LMS diffusion strategies for distributed estimation over networks as a function of the proportion of informed agents and their distribution in space. The results reveal some interesting trade-offs between convergence rate and mean-square performance. In particular, among other results, it is shown that the mean-square performance of adaptive networks does not necessarily improve with a larger proportion of informed agents. Instead, it is established that if the set of informed agents is enlarged, the convergence rate of the network becomes faster albeit at the expense of some deterioration in mean-square performance. The results further establish that uninformed agents play an important role in determining the steady-state performance of the network and that it is preferable to keep some of the highly noisy or highly connected agents uninformed. The arguments reveal an important interplay among three factors: the number and distribution of informed agents in the network, the convergence rate of the learning process, and the estimation accuracy in steady-state. Expressions that quantify these relations are derived, and simulations are included to support the theoretical findings. We illustrate application of the results to two network models, namely, the Erdos-Renyi and scale-free models.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TSP.2012.2230167
Author(s)
Tu, Sheng-Yuan
Sayed, Ali H.  
Date Issued

2013

Publisher

Institute of Electrical and Electronics Engineers, Inc., 345 E. 47 th St. NY NY 10017-2394 United States

Published in
IEEE Transactions on Signal Processing
Volume

61

Issue

6

Start page

1339

End page

1356

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
ASL  
Available on Infoscience
December 19, 2017
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/143261
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés