Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Atomic-scale insights into the origin of rectangular lattice in nanographene probed by scanning tunneling microscopy
 
research article

Atomic-scale insights into the origin of rectangular lattice in nanographene probed by scanning tunneling microscopy

Li, Junhuan
•
Li, Shaoxian  
•
Higashi, Tomoki
Show more
June 24, 2021
Physical Review B

We conducted atomic-scale scanning tunneling microscopy of a graphene nanosheet on graphite. In addition to a rhombus lattice representing the (root 3x root 3)R30 degrees superstructure, we resolved another quadrangle lattice similar to a rectangle in the sheet. Its lattice size was approximately 0.37 x 0.22 nm(2) . To clarify the origin of this unique rectangular lattice, the overlap of the root 3x root 3 superstructures along the direction of their long diagonals was theoretically examined using a simple model. The electron distribution with high energy in the occupied states of armchair-edged graphene nanoribbons (AGNRs) was calculated based on first principles. A rectangular lattice, resembling the one observed experimentally, was found to form on the AGNR under a specific width condition. This finding was also analyzed in terms of Clar's theory and the scattering of electron waves. We propose that wrinkles and adsorbates in graphene play a role similar to an armchair edge, resulting in the root 3x root 3 phase. If these local defects are in close proximity, the rhombus phases interact to generate electronic structures predicted for AGNRs. This is probably the reason why a rectangular lattice was imaged on the graphene sheet that is not an ideal AGNR.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés