Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Biped gait controller for large speed variations, combining reflexes and a central pattern generator in a neuromuscular model
 
conference paper

Biped gait controller for large speed variations, combining reflexes and a central pattern generator in a neuromuscular model

Van der Noot, Nicolas  
•
Ijspeert, Auke J.  
•
Ronsse, Renaud
2015
2015 IEEE International Conference on Robotics and Automation (ICRA)
2015 IEEE International Conference on Robotics and Automation (ICRA)

Controllers based on neuromuscular models hold the promise of energy-efficient and human-like walkers. However, most of them rely on optimizations or cumbersome hand-tuning to find controller parameters which, in turn, are usually working for a specific gait or forward speed only. Consequently, designing neuromuscular controllers for a large variety of gaits is usually challenging and highly sensitive. In this contribution, we propose a neuromuscular controller combining reflexes and a central pattern generator able to generate gaits across a large range of speeds, within a single optimization. Applying this controller to the model of COMAN, a 95 cm tall humanoid robot, we were able to get energy-efficient gaits ranging from 0.4 m/s to 0.9 m/s. This covers normal human walking speeds once scaled to the robot height. In the proposed controller, the robot speed could be continuously commanded within this range by changing three high-level parameters as linear functions of the target speed. This allowed large speed transitions with no additional tuning. By combining reflexes and a central pattern generator, this approach can also predict when the next strike will occur and modulate the step length to step over a hole.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés