Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion dagger
 
Loading...
Thumbnail Image
research article

A hybrid bulk-heterojunction photoanode for direct solar-to-chemical conversion dagger

Yao, Liang  
•
Liu, Yongpeng  
•
Cho, Han-Hee  
Show more
March 30, 2021
Energy & Environmental Science

Organic semiconductors (OSs) are emerging candidates as light-harvesting materials in photoelectrochemical (PEC) cells for direct solar-to-chemical conversion. Despite significant recent progress with OS-based photocathodes, the development of efficient and stable OS-based photoanodes remains a challenge. Here, we demonstrate the concept of an in situ formed covalent polymer network (CPN) in a hybrid CPN:SnO2 bulk-heterojunction (BHJ) to increase the photocurrent density (J(ph)) and stability of OS-based photoanodes for PEC splitting of hydroiodic acid (HI). Our results indicate that the CPN:SnO2 BHJ overcomes the limited exciton diffusion length in OSs and provides a J(ph) improvement of more than three orders of magnitude compared to equivalent bilayer heterojunctions. Furthermore, insight into the operation of the hybrid BHJ in direct contact with aqueous electrolyte is gained with electrochemical impedance spectroscopy and PEC measurements under varying pH. With 1 M HI (pH 0) as the electrolyte, an optimized CPN:SnO2 photoanode without catalyst or protection layer delivers a J(ph) of 3.3 mA cm(-2) at the thermodynamic potential of iodide oxidation (+0.54 V vs. the normal hydrogen electrode) and a continuous operation for 27 h (J(ph) loss of 12%), representing a new benchmark for OS photoanodes for solar-to-chemical conversion. Complete HI splitting is further demonstrated in an all-OS photocathode/photoanode PEC cell to produce H-2 and I-3(-) from simulated sunlight without applied bias.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés