Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Control of HVAC Systems via Scenario-based Explicit MPC
 
conference paper

Control of HVAC Systems via Scenario-based Explicit MPC

Parisio, A.
•
Fabietti, L.
•
Molinari, M.
Show more
2014
Proceedings of the 53rd IEEE Conference on Decision and Control
53rd IEEE Conference on Decision and Control

Improving energy efficiency of Heating, Ventilation and Air Conditioning (HVAC) systems is a primary objective for the society. Model Predictive Control (MPC) techniques for HVAC systems have recently received particular attention, since they can naturally account for several factors, such as weather and occupancy forecasts, comfort ranges and actuation constraints. Developing effective MPC based control strategies for HVAC systems is nontrivial, since buildings dynamics are nonlinear and affected by various uncertainties. Further, the complexity of the MPC problem and the burden of on-line computations can lead to difficulties in integrating this scheme into a building management system. We propose to address this computational issue by designing a scenario-based explicit MPC strategy, i.e., a controller that is simultaneously based on explicit representations of the MPC feedback law and accounts for uncertainties in the occupancy patterns and weather conditions by using the scenarios paradigm. The main advantages of this approach are the absence of a-priori assumptions on the distributions of the uncertain variables, the applicability to any type of building, and the limited on-line computational burden, enabling practical implementations on low-cost hardware platforms. We illustrate the practical implementation of the proposed explicit MPC controller on a room of a university building, showing its effectiveness and computational tractability.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

ExplicitMPC.pdf

Access type

openaccess

Size

1.08 MB

Format

Adobe PDF

Checksum (MD5)

6041ae0041eece5156cbf351b11a7c92

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés