Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Three-dimensional distortions of the tokamak plasma boundary: boundary displacements in the presence of resonant magnetic perturbations
 
research article

Three-dimensional distortions of the tokamak plasma boundary: boundary displacements in the presence of resonant magnetic perturbations

Chapman, I. T.
•
Becoulet, M.
•
Bird, T.
Show more
2014
Nuclear Fusion

The three-dimensional plasma boundary displacements induced by applied non-axisymmetric magnetic perturbations have been measured in ASDEX Upgrade, DIII-D, JET, MAST and NSTX. The displacements arising from applied resonant magnetic perturbations (RMPs) are measured up to ±5% of the minor radius in present-day machines. Good agreement can be found between different experimental measurements and a range of models—be it vacuum field line tracing, ideal three-dimensional MHD equilibrium modelling, or nonlinear plasma amplification. The agreement of the various experimental measurements with the different predictions from these models is presented, and the regions of applicability of each discussed. The measured displacement of the outboard boundary from various machines is found to correlate approximately linearly with the applied resonant field predicted by vacuum modelling (though it should be emphasized that one should not infer that vacuum modelling accurately predicts the displacement inside the plasma). The RMP-induced displacements foreseen in ITER are expected to lie within the range of those predicted by the different models, meaning less than ±1.75% (±3.5 cm) of the minor radius in the H-mode baseline and less than ±2.5% (±5 cm) in a 9 MA plasma. Whilst a displacement of 7 cm peak-to-peak in the baseline scenario is marginally acceptable from both a plasma control and heat loading perspective, it is important that ITER adopts a plasma control system which can account for a three-dimensional boundary corrugation to avoid an n = 0 correction which would otherwise locally exacerbate the displacement caused by the applied fields.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1088/0029-5515/54/8/083006
Web of Science ID

WOS:000339991600010

Author(s)
Chapman, I. T.
Becoulet, M.
Bird, T.
Canik, J.
Cianciosa, M.
Cooper, W. A.
Evans, T.
Ferraro, N.
Fuchs, C.
Gryaznevich, M.
Show more
Corporate authors
ASDEX Upgrade Team; DIII-D Team; MAST Team; NSTX Team; EFDA-JET Contributors
Date Issued

2014

Publisher

IOP Publishing Ltd

Published in
Nuclear Fusion
Volume

54

Issue

8

Article Number

083006

Subjects

boundary displacement

•

resonant magnetic perturbation

•

non-axisymmetry

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CRPP  
SPC  
Available on Infoscience
August 20, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/105927
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés