Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Word-level Embeddings for Cross-Task Transfer Learning in Speech Processing
 
conference paper

Word-level Embeddings for Cross-Task Transfer Learning in Speech Processing

Beckmann, Pierre  
•
Kegler, Mikolaj
•
Cernak, Milos
January 1, 2021
29Th European Signal Processing Conference (Eusipco 2021)
29th European Signal Processing Conference (EUSIPCO)

Recent breakthroughs in deep learning often rely on representation learning and knowledge transfer. In recent years, unsupervised and self-supervised techniques for learning speech representation were developed to foster automatic speech recognition. Up to date, most of these approaches are task-specific and designed for within-task transfer learning between different datasets or setups of a particular task. In turn, learning task-independent representation of speech and cross-task applications of transfer learning remain less common. Here, we introduce an encoder capturing word-level representations of speech for cross-task transfer learning. We demonstrate the application of the pre-trained encoder in four distinct speech and audio processing tasks: (i) speech enhancement, (ii) language identification, (iii) speech, noise, and music classification, and (iv) speaker identification. In each task, we compare the performance of our cross-task transfer learning approach to task-specific baselines. Our results show that the speech representation captured by the encoder through the pre-training is transferable across distinct speech processing tasks and datasets. Notably, even simple applications of our pre-trained encoder outperformed task-specific methods, or were comparable, depending on the task.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés