Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Self-Adaptive Attractor-Shaping for Oscillators Networks
 
conference paper not in proceedings

Self-Adaptive Attractor-Shaping for Oscillators Networks

Rodriguez, Julio  
•
Hongler, Max-Olivier  
•
Blanchard, Philippe
2011
Third International Workshop on nonlinear Dynamics and Synchronization and Sixteenth International Symposium on Theoretical Electrical Engineering

We consider a network of N coupled limit cycle oscillators, each having a set of control parameters Λ_k, k = 1, . . . , N, that controls the frequency and the geometry of the limit cycle. We implement a self-adaptive mechanism that drives the local systems to share a common set of parameters Λ_c. This situation therefore strongly differs from classical synchronization problems where the Λ_k are kept constant. The deformations of the Λ_k towards the consensual Λ_k are “plastic” - once Λ_c is reached, it remains permanent even in absence of interactions. Again, this has to be contrasted with classical synchronization which does not affect the Λ_k (in the absence of interactions, individual behaviors are restored). The resulting consensual Λ_c can be analytically characterized. In general, the set of initial conditions from which Λ_c is reached depends on the network topology. The class of models discussed here unveil the basic features necessary to construct a wider class of dynamical system sharing self-adaptive attractor-shaping capability. Finally, we present numerical simulations that corroborate our theoretical assertions.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés