Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. On the range of feasible power trajectories for a population of thermostatically controlled loads
 
conference paper

On the range of feasible power trajectories for a population of thermostatically controlled loads

Paccagnan, Dario
•
Kamgarpour, Maryam  
•
Lygeros, John
December 2015
2015 54th IEEE Conference on Decision and Control (CDC)
2015 54th IEEE Conference on Decision and Control (CDC)

We study the potential of a population of thermostatically controlled loads to track desired power signals with provable guarantees. Based on connecting the temperature state of an individual device with its internal energy, we derive necessary conditions that a given power signal needs to satisfy in order for the aggregation of devices to track it using non-disruptive probabilistic switching control. Our derivation takes into account hybrid individual dynamics, an accurate continuous-time Markov chain model for the population dynamics and bounds on switching rates of individual devices. We illustrate the approach with case studies.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés