Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Description and performance of track and primary-vertex reconstruction with the CMS tracker
 
research article

Description and performance of track and primary-vertex reconstruction with the CMS tracker

Chatrchyan, Serguei
•
Khachatryan, Vardan
•
Sirunyan, Albert M
Show more
October 16, 2014
Journal of Instrumentation

A description is provided of the software algorithms developed for the CMS tracker both for reconstructing charged-particle trajectories in proton-proton interactions and for using the resulting tracks to estimate the positions of the LHC luminous region and individual primary-interaction vertices. Despite the very hostile environment at the LHC, the performance obtained with these algorithms is found to be excellent. For tbar t events under typical 2011 pileup conditions, the average track-reconstruction efficiency for promptly-produced charged particles with transverse momenta of p(T) > 0.9GeV is 94% for pseudorapidities of |η| < 0.9 and 85% for 0.9 < |η| < 2.5. The inefficiency is caused mainly by hadrons that undergo nuclear interactions in the tracker material. For isolated muons, the corresponding efficiencies are essentially 100%. For isolated muons of p(T) = 100GeV emitted at |η| < 1.4, the resolutions are approximately 2.8% in p(T), and respectively, 10μm and 30μm in the transverse and longitudinal impact parameters. The position resolution achieved for reconstructed primary vertices that correspond to interesting pp collisions is 10–12μm in each of the three spatial dimensions. The tracking and vertexing software is fast and flexible, and easily adaptable to other functions, such as fast tracking for the trigger, or dedicated tracking for electrons that takes into account bremsstrahlung.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1088/1748-0221/9/10/P10009
ArXiv ID

1405.6569

Author(s)
Chatrchyan, Serguei
Khachatryan, Vardan
Sirunyan, Albert M
Tumasyan, Armen
Adam, Wolfgang
Bergauer, Thomas
Dragicevic, Marko
Erö, Janos
Fabjan, Christian
Friedl, Markus
Show more
Date Issued

2014-10-16

Published in
Journal of Instrumentation
Volume

9

Issue

10

Start page

P10009

End page

P10009

Subjects

track data analysis: efficiency

•

charged particle: trajectory

•

vertex: primary

•

p p: scattering

•

tracking detector

•

programming

•

performance

•

CMS

•

spatial resolution

•

momentum resolution

•

trigger

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LPHE  
Available on Infoscience
February 17, 2020
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/165712
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés