Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Address partitioning in DSM clusters with parallel coherence controllers
 
conference paper

Address partitioning in DSM clusters with parallel coherence controllers

Pragaspathy, Ilanthiraiyan
•
Falsafi, Babak  
2000
Proceedings of the International Conference on Parallel Architectures and Compilation Techniques

Recent research suggests that DSM clusters can benefit from parallel coherence controllers. Parallel controllers requires address partitioning and synchronization to avoid handling multiple coherence events for the same memory address simultaneously. This paper evaluates a spectrum of address partitioning schemes that vary in performance, hardware complexity, and cost. Dynamic partitioning minimizes load imbalance in controllers by using hardware address synchronizers to distribute the load among multiple protocol engines at runtime. Static partitioning obviates the need for hardware synchronization and assigns memory addresses to protocol engines at design time, but may lead to load imbalance among engines. We present simulation results indicating that: (i) dynamic partitioning performs best speeding up application execution on an 8 8-way cluster on average by 62% using four-engine as compared to single-engine controllers, (ii) block- interleaved static partitioning using low-order address bits is an attractive alternative and performs close to dynamic partitioning when protocol occupancies are low or there is little queueing, and (iii) previously proposed static schemes that partition memory pages either into home and remote engines or using low-order page address bits results in a high load imbalance in parallel controllers.

  • Files
  • Details
  • Metrics
Type
conference paper
DOI
10.1109/PACT.2000.888330
Author(s)
Pragaspathy, Ilanthiraiyan
Falsafi, Babak  
Date Issued

2000

Published in
Proceedings of the International Conference on Parallel Architectures and Compilation Techniques
Start page

47

End page

56

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
PARSA  
Event placeEvent date
Available on Infoscience
April 6, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/36919
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés