Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Detecting troubled-cells on two-dimensional unstructured grids using a neural network
 
research article

Detecting troubled-cells on two-dimensional unstructured grids using a neural network

Ray, Deep  
•
Hesthaven, Jan S.  
November 1, 2018
Journal of Computational Physics

In a recent paper [Ray and Hesthaven, J. Comput. Phys. 367 (2018), pp 166-191], we proposed a new type of troubled-cell indicator to detect discontinuities in the numerical solutions of one-dimensional conservation laws. This was achieved by suitably training an articial neural network on canonical local solution structures for conservation laws. The proposed indicator was independent of problem-dependent parameters, giving it an advantage over existing limiter-based indicators. In the present paper, we extend this approach to train a similar network capable of detecting troubled-cells on two-dimensional unstructured grids. The proposed network has a smaller architecture compared to its one-dimensional predecessor, making it computationally efficient. Several numerical results are presented to demonstrate the performance of the new indicator.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2D_troubled_cell_indicator.pdf

Access type

openaccess

Size

22.5 MB

Format

Adobe PDF

Checksum (MD5)

3368774832e7bfe03a32f75282b953c0

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés