Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation
 
research article

Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation

Watanabe, Mitsuhiro
•
Houten, Sander M.  
•
Mataki, Chikage  
Show more
2006
Nature

While bile acids (BAs) have long been known to be essential in dietary lipid absorption and cholesterol catabolism, in recent years an important role for BAs as signalling molecules has emerged. BAs activate mitogen-activated protein kinase pathways, are ligands for the G-protein-coupled receptor (GPCR) TGR5 and activate nuclear hormone receptors such as farnesoid X receptor alpha (FXR-alpha; NR1H4). FXR-alpha regulates the enterohepatic recycling and biosynthesis of BAs by controlling the expression of genes such as the short heterodimer partner (SHP; NR0B2) that inhibits the activity of other nuclear receptors. The FXR-alpha-mediated SHP induction also underlies the downregulation of the hepatic fatty acid and triglyceride biosynthesis and very-low-density lipoprotein production mediated by sterol-regulatory-element-binding protein 1c. This indicates that BAs might be able to function beyond the control of BA homeostasis as general metabolic integrators. Here we show that the administration of BAs to mice increases energy expenditure in brown adipose tissue, preventing obesity and resistance to insulin. This novel metabolic effect of BAs is critically dependent on induction of the cyclic-AMP-dependent thyroid hormone activating enzyme type 2 iodothyronine deiodinase (D2) because it is lost in D2-/- mice. Treatment of brown adipocytes and human skeletal myocytes with BA increases D2 activity and oxygen consumption. These effects are independent of FXR-alpha, and instead are mediated by increased cAMP production that stems from the binding of BAs with the G-protein-coupled receptor TGR5. In both rodents and humans, the most thermogenically important tissues are specifically targeted by this mechanism because they coexpress D2 and TGR5. The BA-TGR5-cAMP-D2 signalling pathway is therefore a crucial mechanism for fine-tuning energy homeostasis that can be targeted to improve metabolic control.

  • Files
  • Details
  • Metrics
Type
research article
DOI
10.1038/nature04330
PubMed ID

16400329

Author(s)
Watanabe, Mitsuhiro
Houten, Sander M.  
Mataki, Chikage  
Christoffolete, Marcelo A.
Kim, Brian W.
Sato, Hiroyuki
Messaddeq, Nadia
Harney, John W.
Ezaki, Osamu
Kodama, Tatsuhiko
Show more
Date Issued

2006

Published in
Nature
Volume

439

Issue

7075

Start page

484

End page

9

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
UPSCHOONJANS  
LISP  
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/36771
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés