Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Recycling Spent Ternary Cathodes to Oxygen Evolution Catalysts for Pure Water Anion-Exchange Membrane Electrolysis
 
research article

Recycling Spent Ternary Cathodes to Oxygen Evolution Catalysts for Pure Water Anion-Exchange Membrane Electrolysis

Zhang, Liyue
•
Xu, Qiucheng  
•
Wen, Shuting
Show more
August 20, 2024
ACS Nano

Recycling spent lithium-ion batteries (LIBs) to efficient water-splitting electrocatalysts is a promising and sustainable technology route for green hydrogen production by renewables. In this work, a fluorinated ternary metal oxide (F-TMO) derived from spent LIBs was successfully converted to a robust water oxidation catalyst for pure water electrolysis by utilizing an anion-exchange membrane. The optimized catalyst delivered a high current density of 3.0 A cm-2 at only 2.56 V and a durability of >300 h at 0.5 A cm-2, surpassing the noble-metal IrO2 catalyst. Such excellent performance benefits from an artificially endowed interface layer on the F-TMO, which renders the exposure of active metal (oxy)hydroxide sites with a stabilized configuration during pure water operation. Compared to other metal oxides (i.e., NiO, Co3O4, MnO2), F-TMO possesses a higher stability number of 2.4 × 106, indicating its strong potential for industrial applications. This work provides a feasible way of recycling waste LIBs to valuable electrocatalysts.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés