Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Affine congruences and rational points on a certain cubic surface
 
research article

Affine congruences and rational points on a certain cubic surface

Le Boudec, Pierre  
2014
Algebra & Number Theory

We establish estimates for the number of solutions of certain affine congruences. These estimates are then used to prove Manin's conjecture for a cubic surface split over Q whose singularity type is D-4. This improves on a result of Browning and answers a problem posed by Tschinkel.

  • Details
  • Metrics
Type
research article
DOI
10.2140/ant.2014.8.1259
Web of Science ID

WOS:000344649600009

Author(s)
Le Boudec, Pierre  
Date Issued

2014

Publisher

Mathematical Science Publ

Published in
Algebra & Number Theory
Volume

8

Issue

5

Start page

1259

End page

1296

Subjects

affine congruences

•

rational points

•

Manin's conjecture

•

cubic surfaces

•

universal torsors

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
TAN  
Available on Infoscience
December 30, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/109543
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés