Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Magnetization of semiconductor quantum dots
 
research article

Magnetization of semiconductor quantum dots

Schwarz, M. P.
•
Grundler, D.
•
Wilde, M.
Show more
2002
Journal of Applied Physics

We present experimental studies of the magnetization of electrons in semiconductorquantum dots. Starting from a modulation-doped AlGaAs/GaAs heterostructure an array of dots was patterned by laser-interference lithography and deep mesa etching. The quantum-dot array was integrated into a highly sensitive micromechanical cantilever magnetometer. At a temperature of 0.3 K we observe pronounced oscillations in the magnetization. With regard to their periodicity and temperature dependence they differ from the de Haas–van Alphen effect observed in a two-dimensional electron system. We find that the magnetization calculated from the single-particle Fock–Darwin energies of a quantum dot does not reproduce the experiment. From this we conclude that the electronic ground state of the dots is strongly influenced by electron–electron interaction.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés