Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Range of reproduction number estimates for COVID-19 spread
 
research article

Range of reproduction number estimates for COVID-19 spread

Pasetto, Damiano
•
Lemaitre, Joseph C.  
•
Bertuzzo, Enrico
Show more
January 29, 2021
Biochemical And Biophysical Research Communications

To monitor local and global COVID-19 outbreaks, and to plan containment measures, accessible and comprehensible decision-making tools need to be based on the growth rates of new confirmed infections, hospitalization or case fatality rates. Growth rates of new cases form the empirical basis for estimates of a variety of reproduction numbers, dimensionless numbers whose value, when larger than unity, describes surging infections and generally worsening epidemiological conditions. Typically, these determinations rely on noisy or incomplete data gained over limited periods of time, and on many parameters to estimate. This paper examines how estimates from data and models of time-evolving reproduction numbers of national COVID-19 infection spread change by using different techniques and assumptions. Given the importance acquired by reproduction numbers as diagnostic tools, assessing their range of possible variations obtainable from the same epidemiological data is relevant. We compute control reproduction numbers from Swiss and Italian COVID-19 time series adopting both data convolution (renewal equation) and a SEIR-type model. Within these two paradigms we run a comparative analysis of the possible inferences obtained through approximations of the distributions typically used to describe serial intervals, generation, latency and incubation times, and the delays between onset of symptoms and notification. Our results suggest that estimates of reproduction numbers under these different assumptions may show significant temporal differences, while the actual variability range of computed values is rather small. (c) 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés