Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Books and Book parts
  4. Barycentric Bounds in Stochastic Programming: Theory and Application
 
book part or chapter

Barycentric Bounds in Stochastic Programming: Theory and Application

Frauendorfer, Karl
•
Kuhn, Daniel  
•
Schürle, Michael
Infanger, Gerd
2011
Stochastic Programming: The State of the Art, In Honor of George B. Dantzig

The design and analysis of efficient approximation schemes are of fundamental importance in stochastic programming research. Bounding approximations are particularly popular for providing strict error bounds that can be made small by using partitioning techniques. In this chapter we develop a powerful bounding method for linear multistage stochastic programs with a generalized nonconvex dependence on the random parameters. Thereby, we establish bounds on the recourse functions as well as compact bounding sets for the optimal decisions. We further demonstrate that our bounding methods facilitate the reliable solution of important real-life decision problems. To this end, we solve a stochastic optimization model for the management of nonmaturing accounts and compare the bounds on maximum profit obtained with different partitioning strategies.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés