Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Mechanism of interfacial layer suppression after performing surface Al(CH3)3 pretreatment during atomic layer deposition of Al2O3
 
research article

Mechanism of interfacial layer suppression after performing surface Al(CH3)3 pretreatment during atomic layer deposition of Al2O3

Xu, Min
•
Zhang, Chi
•
Ding, Shi-Jin
Show more
2006
Journal of Applied Physics

During atomic layer deposition of high permittivity (high-k) metal oxide gate dielectrics, an interfacial layer (IL) containing SiOx between high-k dielectric and Si substrate is almost unavoidable. However, an Al(CH3)(3) (TMA) pretreatment for 3600 s on H-terminated silicon surface can effectively reduce the interfacial layer from 1.7 to 0.5 nm during atomic layer deposition of aluminum oxide. Interestingly, the surface TMA pretreatment increases the thickness of the initial IL during atomic layer deposition, but it greatly suppresses the final IL after 35 growth cycles. A reasonable mechanism is proposed based on the steric hindrance effect cofunctioning with the interfacial Al catalyzing effect.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés