Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A transparent silk-fibroin-based triboelectric microgenerator for airflow energy harvesting
 
conference paper

A transparent silk-fibroin-based triboelectric microgenerator for airflow energy harvesting

Zhang, Xiaosheng  
•
Guo, Yinben
•
Wang, Ya  
Show more
2017
Proceedings of Nano/Micro Engineered and Molecular Systems (NEMS), 2017 IEEE 12th International Conference onedings of Nano/Micro Engineered and Molecular Systems (NEMS), 2017 IEEE 12th International Conference on
IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)

We present a new transparent high-performance triboelectric microgenerator (TEMG) based on an emerging material, silk fibroin. Silk fibroin has a strong ability to lose electrons and occupies a top-level positive position in the triboelectric series. It thus significantly contributes to the performance enhancement of TEMG. To efficiently harvest energy from airflow, a channel-shaped TEMG was developed. A cube-shaped microstructure array was fabricated atop the other triboelectric pair, in our case PDMS, by casting against a 3D printed mold. Compared with flat surface, this design allows for a 2.5-fold increase of TEMG's output was realized. The systematic investigation of the electrical performance of TEMG showed that a power of 162 μW was achieved with a matched load of 8 MΩ. A corresponding power density of 864 W/m2 was achieved. This TEMG has outstanding powering ability, and is able to charge a 1 μF and a 10 μF capacitors to 1 V within 3.4 s and 15.7 s, respectively. Finally, the TEMG can be successfully used to deliver power to a 6-bit liquid crystal display (LCD) and 17 light emitting diodes (LEDs), respectively, without any external circuit.

  • Files
  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés