Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Investigation of the dominant 1/f noise source in silicon nanowire sensors
 
research article

Investigation of the dominant 1/f noise source in silicon nanowire sensors

Bedner, Kristine
•
Guzenko, Vitaliy A.
•
Tarasov, Alexey
Show more
2014
Sensors And Actuators B-Chemical

We analyzed 1/f noise in silicon nanowire ion-sensitive field-effect transistors (SiNW-ISFETs) having different wire widths ranging from 100 nm to 1 pin and operated under different gating conditions in order to determine the noise source and the sensor accuracy. We find that the gate-referred voltage noise S-VG (power spectral density) is constant over a large range of SiNWs resistances tuned by a DC gate voltage. The measurements of S-VG for SiNWs with two different gate-oxide thicknesses, but otherwise similar device parameters, are only compatible with the so-called trap state noise model in which the source of 1/f noise is due to trap states residing in the gate oxide (most likely in the interface between the semiconductor and the oxide). S-VG is found to be inversely proportional to the wire width for constant wire length. From the noise data we determine a sensor accuracy of 0.017% of a full Nernstian shift of 60 mV/pH for a SiNW wire with a width of 1 pm. No influence of the ions in the buffer solution was found. (C) 2013 Elsevier B.V. All rights reserved.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés