Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. On a graph coloring problem arising from discrete tomography
 
research article

On a graph coloring problem arising from discrete tomography

Bentz, Cédric
•
Costa, Marie-Christine
•
de Werra, Dominique  
Show more
2008
Networks

An extension of the basic image reconstruction problem in discrete tomography is considered: given a graph $G=(V,E)$ and a family $\mathcal{P}$ of chains $P_i$ together with vectors $h(P_i)=(h_{i}^{1},...,h_{i}^{k})$, one wants to find a partition $V^{1},...,V^{k}$ of $V$ such that for each $P_i$ and each color $j$, $|V^{j}\cap P_i|=h_{i}^{j}$. An interpretation in terms of scheduling is presented.\ We consider special cases of graphs and identify polynomially solvable cases; general complexity results are established in this case and also in the case where $V^{1},...,V^{k}$ is required to be a proper vertex $k$-coloring of $G$. Finally we examine also the case of (proper) edge $k$-colorings and determine its complexity status.

  • Details
  • Metrics
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés